Approximability of Minimum-weight Cycle Covers

نویسنده

  • Bodo Manthey
چکیده

A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L ⊆ N. For most sets L, computing L-cycle covers of minimum weight is NP-hard and APX-hard. While computing L-cycle covers of maximum weight admits constant factor approximation algorithms (both for undirected and directed graphs), almost nothing is known so far about the approximability of computing L-cycle cover of minimum weight. We investigate how well L-cycle covers of minimum weight can be approximated. For undirected graphs, we give a positive answer: We devise a polynomial-time algorithm for approximating the L-cycle cover problem in undirected graphs. Our algorithm achieves an approximation ratio of 4 and works for all sets L. For directed graphs, we give a negative answer by proving an unconditional inapproximability results: If the set L is immune, then the problem of computing L-cycle covers of minimum weight in directed graphs cannot be approximated within a factor of o(n) where n is the number of vertices. Finally, we present an improved approximation algorithm for computing L-cycle covers of maximum weight in directed graphs. This algorithm achieves an approximation ratio of 8/3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum-Weight Cycle Covers and Their Approximability

A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L ⊆ N. We investigate how well L-cycle covers of minimum weight can be approximated. For undirected graphs, we devise a polynomial-time approximation algorithm that achieves a constant approximation ratio for all sets...

متن کامل

On Approximating Restricted Cycle Covers

A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. A special case of L-cycle covers are k-cycle covers for k ∈ N, where the length of each cycle must be at least k. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We com...

متن کامل

Approximating Multi-criteria Max-TSP

The traveling salesman problem (TSP) is one of the most fundamental problems in combinatorial optimization. Given a graph, the goal is to find a Hamiltonian cycle of minimum or maximum weight. We consider finding Hamiltonian cycles of maximum weight (Max-TSP). An instance of Max-TSP is a complete graph G = (V,E) with edge weights w : E → N. The goal is to find a Hamiltonian cycle of maximum wei...

متن کامل

On Approximability of the Independent/Connected Edge Dominating Set Problems

We investigate polynomial-time approximability of the problems related to edge dominating sets of graphs. When edges are unit-weighted, the edge dominating set problem is polynomially equivalent to the minimum maximal matching problem, in either exact or approximate computation, and the former problem was recently found to be approximable within a factor of 2 even with arbitrary weights. It wil...

متن کامل

Approximability of identifying codes and locating-dominating codes

We study the approximability and inapproximability of finding identifying codes and locating-dominating codes of the minimum size. In general graphs, we show that it is possible to approximate both problems within a logarithmic factor, but sublogarithmic approximation ratios are intractable. In bounded-degree graphs, there is a trivial constant-factor approximation algorithm, but arbitrarily lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006